Elucidating the Mechanisms Regulating Cardiac Cytoarchitecture

Elucidating the Mechanisms Regulating Cardiac Cytoarchitecture
Author: Stefanie Whalen Mares Novak
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Elucidating the Mechanisms Regulating Cardiac Cytoarchitecture Book in PDF, Epub and Kindle

In striated muscle, contractile activity is dependent on the coordination between the basic contractile unit called the sarcomere and complex cytoskeletal networks. For efficient contractile function, each component is highly regulated to ensure proper expression, assembly and localization within the cell. The molecular mechanisms that govern regulation in muscle cells are still being investigated. In this dissertation, two areas of regulation were investigated: 1) regulation of the heart's conduction system by the RNA-binding protein Fragile X (Chapter 2); and 2) regulation of the sarcomere’s thin filament system by the actin-binding proteins tropomodulin and leiomodin (Chapter 3). The function of Fragile X protein (FraX) in the heart is not well understood. In Drosophila, there is one functionally conserved FraX termed dFmr1, whereas in mammals there are three FraX members with predominate expression of FXR1 in striated muscle. We found that in Drosophila, dFmr1 is required cell autonomously in cardiac cells for regulating heart rate. In mice, cardiac specific loss of FXR1 results in enlarged ventricular lumens and a significant reduction in ejection fraction. Further analyses show FXR1 may influence cardiac membrane potential and calcium homeostasis. To better understand the role of FraX in disease, human and mouse models of dilated cardiomyopathy were examined. We show that FXR1 protein is upregulated and increased expression of FXR1 regulates gap junction remodeling contributing to ventricular tachycardia in mouse hearts. Overall our results support FraX’s essential role in regulating heart function. Another important factor in maintaining proper heart function is regulation of the basic contractile unit – the sarcomere. The actin-binding proteins tropomodulin (Tmod1-4) and leiomodin (Lmod1-3) are considered to be important regulators of the thin filament but their functional properties are still being studied. In striated muscle, Tmod1 and Lmod2 both assemble at the pointed ends of thin filaments but function differently – Tmod1 restricts while Lmod2 elongates thin filament lengths. Given slight differences in structure, we sought to determine the functional significance of their individual domains. For Tmod1, we verify that both tropomyosin-binding sites are necessary for pointed-end assembly and suggest another regulatory site is located within the C-terminal LRR domain. For Lmod2, we confirm the presence of only one functionally significant tropomyosin-binding site and the presence of an N-terminal actin-binding site that influences pointed-end assembly. We also show that tropomyosin-binding affinity of Tmod1 affects its localization, its actin-capping properties, and in skeletal muscle its ability to compete with Tmod3 and Tmod4 for pointed-end assembly. Moreover, we demonstrate endogenous phosphorylation of Tmod1 and Lmod2, suggesting a potential regulatory mechanism, as well as identify potential binding partners that may influence their function in the cell. In summary, the ability of the heart to function properly is dependent on its ability to create an electrical signal and transmit that signal between cells in order to generate muscle contraction. Taken together, these data indicate that FraX contributes to the regulation of membrane potential and gap junction properties, whereas Tmod and Lmod regulate the thin filament – both influencing muscle contraction.


Elucidating the Mechanisms Regulating Cardiac Cytoarchitecture
Language: en
Pages:
Authors: Stefanie Whalen Mares Novak
Categories:
Type: BOOK - Published: 2017 - Publisher:

GET EBOOK

In striated muscle, contractile activity is dependent on the coordination between the basic contractile unit called the sarcomere and complex cytoskeletal netwo
Cardiac Cytoarchitecture
Language: en
Pages: 320
Authors: Elisabeth Ehler
Categories: Science
Type: BOOK - Published: 2015-03-03 - Publisher: Springer

GET EBOOK

This book presents a collection of expert reviews on different subcellular compartments of the cardiomyocyte, addressing fundamental questions such as how these
Cardiovascular Regenerative Medicine
Language: en
Pages: 233
Authors: Vahid Serpooshan
Categories: Medical
Type: BOOK - Published: 2019-06-29 - Publisher: Springer

GET EBOOK

This book is a comprehensive and up-to-date resource on the use of regenerative medicine for the treatment of cardiovascular disease. It provides a much-needed
Adverse Effects of Vaccines
Language: en
Pages: 894
Authors: Institute of Medicine
Categories: Medical
Type: BOOK - Published: 2012-04-26 - Publisher: National Academies Press

GET EBOOK

In 1900, for every 1,000 babies born in the United States, 100 would die before their first birthday, often due to infectious diseases. Today, vaccines exist fo
Micro-, Meso- and Macro-Dynamics of the Brain
Language: en
Pages: 181
Authors: György Buzsáki
Categories: Medical
Type: BOOK - Published: 2016-05-02 - Publisher: Springer

GET EBOOK

This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress an