A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic Frameworks

A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic Frameworks
Author: Katharine Harp Rigdon
Publisher:
Total Pages: 47
Release: 2019
Genre: Carbon dioxide
ISBN:

Download A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic Frameworks Book in PDF, Epub and Kindle

In this thesis, we designed and built a gas flow-through system to study dynamic adsorption separation of hydrogen isotopes in metal-organic frameworks (MOFs). MOFs are porous, crystalline materials composed of metal complexes connected by organic linkers. They have been proposed as a cheaper, more energy efficient approach to hydrogen isotope separation than current industrial methods. We have previously found evidence of a zero-point energy-based separation mechanism for hydrogen isotopes in two MOFs: Co-MOF-74 and Cu(I)-MFU-4l. This mechanism, chemical affinity quantum sieving (CAQS), has been extensively studied under static equilibrium conditions. The system in this work was developed so that CAQS could be studied under dynamic conditions that more closely resemble those in industrial separation. Breakthrough analysis is an established technique for studying dynamic separation in porous materials. Generally, a breakthrough experiment involves flowing a gas mixture through a fixed bed of adsorbent material and measuring the composition of the effluent flow. In this work, a 1:1 mixture of common hydrogen and its isotope deuterium was flowed through 71 mg of Co-MOF-74 or 22 mg of Cu(I)-MFU-4l. A quadrupole mass spectrometer was used to monitor the composition of the effluent flow. We saw preferential adsorption of deuterium over common hydrogen in Co-MOF-74 at 77K and Cu(I)-MFU-4l at 170K, 140K, and 110K. This behavior was absent in Cu(I)-MFU-4l at 77K, a phenomenon that we would like to investigate further. Minimal adsorption occurred in both MOFs at room temperature, as expected. A selectivity of deuterium over common hydrogen was calculated for each temperature. These selectivities were approximately 30% lower than comparable literature values. Our goal is to make improvements to our system and methods to measure the selectivity more accurately and reproducibly. Notably, all measured selectivities were higher than the selectivity of the Girdler Sulfide method and cryogenic distillation, two industrial hydrogen isotope separation processes we are trying to improve on. This new system gives us the capability to study dynamic adsorption and kinetic separation of hydrogen isotopes in metal-organic frameworks going forward. We hope that our work will inform the development of efficient, environmentally sustainable separation processes.


A Gas Flow-Through System for Hydrogen Isotopic Separation with Metal-Organic Frameworks
Language: en
Pages: 47
Authors: Katharine Harp Rigdon
Categories: Carbon dioxide
Type: BOOK - Published: 2019 - Publisher:

GET EBOOK

In this thesis, we designed and built a gas flow-through system to study dynamic adsorption separation of hydrogen isotopes in metal-organic frameworks (MOFs).
Helium and Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks
Language: en
Pages: 200
Authors: Ingrid Zaiser
Categories: Science
Type: BOOK - Published: 2016-10-31 - Publisher: Cuvillier Verlag

GET EBOOK

The separation of isotopes has always been a challenge because of their identical size, shape and thermodynamic properties. Nowadays, the extraction of deuteriu
Hydrogen Isotope Separation in Metal-Organic Frameworks
Language: en
Pages: 63
Authors: Naiyuan Zhang
Categories: Deuterium
Type: BOOK - Published: 2018 - Publisher:

GET EBOOK

In this thesis we present our research on hydrogen isotope separation using metal-organic frameworks (MOFs). Deuterium is one of the two stable isotopes of hydr
Handbook of Membrane Separations
Language: en
Pages: 601
Authors: Anil K. Pabby
Categories: Science
Type: BOOK - Published: 2023-12-22 - Publisher: CRC Press

GET EBOOK

The third edition of the Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications provides a comprehensive discussion
Hydrogen Storage Materials
Language: en
Pages: 336
Authors: R. G. Barnes
Categories: Energy storage
Type: BOOK - Published: 1988 - Publisher:

GET EBOOK

Ames Laboratory, Iowa, USA